Support for Interactive Tools and Systems

Luis Carrico, Nuno Guimardes, Pedro Antunes

1 Introduction

In this paper, we describe what we consider to
be the essential support for interactive tools, in
an open environment. The next section proposes
an extensible architecture that covers most as-
pects that tools and applications are concerned
with. The following section describes a runtime
system for C++ that supports our interactive pro-
gramming needs. Then a section is dedicated to
tools that were built using these two main com-
ponents. The first tool is the INGRID application
builder [3,8,9]. The second, called Hyplngrid, is a
hypertext system [4] that mimics part of the Hyper-
Card [11] functionality in the Unix/X environment.
This tool has evolved from INGRID with a minimal
effort, thus proving the concept that the underlying
support for interactive programming and applica-
tion construction is generic and reusable. We finish
with an overview of future directions, as well as a
set of conclusions.

2 Architecture for Interaction

The definition of an architecture for interactive ap-
plications should provide the structural guidelines
for its construction. As premisses it should define
a clear separation between the computational and

INESC

R.Alves Redol, 9, 60., 1000 Lisboa
Portugal

Tel: +351-1-3155150
e-mail: lmc@inesc.pt

interactive parts of an application (dialogue inde-
pendence as defined in [10]), a well defined func-
tional partition within the interactive component
and a methodological approach to the composition
of those functional parts.

Semantic
Support

Dialogue

Application Code

Dialog

H Driver jo-

A

Figure 1: The 4D functional architecture

Functional partition According to the above
principles, we defined the 4D architecture. It clas-
sifies the objects composing an interactive applica-
tion into four possible categories as shown in fig. 1:

Display: This category corresponds to the presen-
tation component of the UI [12], usually in-
terfacing with a graphical system or a set of
multimedia devices. Display objects integrate
existing Ul components, such as Xt widgets
[15], adapting them to the 4D architecture.

Data: These objects provide the interface between
the interactive and computational parts of the

Proc_e_edings of the ERCIM Workshop on Distributed Systems, User Interfaces and Multimedia,
Decision Support Methods and Applications. Lisboa, Portugal, November, 1991.

paa
Proceedings of the ERCIM Workshop on Distributed Systems, User Interfaces and Multimedia, Decision Support Methods and Applications. Lisboa, Portugal, November, 1991.

application. In general they represent abstract
data types that range from simple ones (like
Integers, Floats or Lists), to full database ac-
cess. Data objects are another locus of inte-
gration for existing class libraries (like libc++,
libg++ or NIHCL).

Dialogue: Dialogue objects define the control of
the interaction. Although the architecture
promotes the definition of event driven dia-
logues, it easily allows other dialogue models.

Driver: This category manages the transfer of in-
formation between objects. Its role is to per-
form data conversion, optimising the integra-
tion of the other components.

Architecture’s dynamics The 4D architecture
introduces a fifth concept addressing the dynamics
of the application:

Link: A selective communication channel that
carries messages between objects. Each link
is characterised by a sender object, an event
identification on that sender, a receiver and
an action to be performed on the receiver.

When an event is triggered in an object, its links
(for which he is the sender) are scanned and, for
those corresponding to that event, the associated
actions are executed. That execution corresponds
to a message sent to the receiver. On the reception
of a message, the new object may trigger its own
events, repeating the process. On Display objects,
events are usually triggered as a consequence of a
user action.

The link is mainly a programmable entity that
allows each component to work autonomously
without explicit knowledge of the other objects. In
fact, as actions may specify any message on the
receiver, they can adapt any object to its environ-
ment. For structural organisation, however, Data
and Display objects must not be linked together
(see fig. 1) and the action specification of their links
is disabled. This rules will definitely concentrate
the definition of the specific behaviour of each in-
terface in the Dialogue and Driver components.

Object composition Apart from the principles
that guide object classification into 4D categories,
object composition must obey the fo]loying rules:

1. Links defined on a component, to objects out-
side its encapsulator (the composed object),
follow the rules applied to both ob jects (com-
ponent, and encapsulator).

2. Incoming links can never specify actions in
components.

3. Display objects can only be compose& into an
encapsulator Display object.

3 Run-time support

The use of 4D ob jects as a base for the development
of interactive programming tools, and the imple-
mentation of links, both require a run-time foun-
dation which supports interpretation, as a base for
experimental programming [13], and a mechanism
which allows the preservation of programming ses-
sions.

The language level support Having chosed a
language like C++ for the sake of the openness and
portability it provides, a run-time support, named
ICE, has been developed which offers the following
services:

Object identification: enables the association of
user readable names to objects.

Object creation: provides a primitive for object
instantiation, independently of the class it be-
longs to.

Message invocation: allows the invocation of
member functions through a message like
mechanism, using a common generic primitive
which maintains the characteristics of the host
language (e.g. member overloading).

Object storage/retrieval: allows object passi-
vation and activation, supporting multiple ex-
ternal representations, including C++ itself.

Except for the first service (name-service), imple-
mented as a set of hash tables, all the other are

based in the existence of type-objects. These ob-
jects describe classes and C++ primitive types,
providing an uniform run-time type information.
Class specific type-objects implement the algo-
rithms for method lookup offering the services for
object creation and message invocation. The stor-
age/retrieval service is supported by dedicated ob-
jects, named io-objects. Each of them may define
its own syntax and storage source/sink, but all of
them base the semantic contents of their storage
result on the instance description obtained from
type-objects. Finally, ICE provides a common in-
terface to most of the above services, that can be
inherited by deriving from the JObject class, or sim-
ply using typed-references, represented by IOID.

ICE also includes a parser for C++ definitions,
that generates code for the static instantiation of
type-objects.

Architecture specific support The basic as-
pects of 4D architecture are defined on several
classes that classify objects into each category and
provide mechanisms to establish links, verify and
maintain lists of links, trigger events, select them
and executing the associated actions. This execu-
tion rely on the ICE message invocation mechanism
provided by the IObject base class. Finally, more
specialised classes were implemented in this foun-
dations, integrating existing toolkits, simply recur-
ring to parsers and other code generation tools.

4 'Tools for Application Con-
struction

The 4D architecture and the ICE run-time pro-
vided support for the construction of two tools.
The first tool, INGRID!, is an interactive tool for
user interface construction, allowing rapid proto-
typing and incremental development. The second
tool, HypIngrid, is an open hypertext authoring
system that allows the creation of hypertext appli-
cations, with a functionality very similar to Hyper-
Card.

1INteractive GRaphical Interface Designer

4.1 INGRID

The INGRID tool is composed by a set of subtools.
The top-level one is the Interface Organizer. It
allows access to the interface objects, manages the
creation of links, and provides the interface to func-
tions like save/retrieve, C++ code generation, on-
line help, etc. Display objects can be created and
parameterised with the Display Editor. General
object parameterisation can be performed through
class specific inspectors.

INGRID and the 4D architecture The adop-
tion of the 4D model for user interface construction
offers several advantages:

e The definition of four categories allows a struc-
tured guided construction of the user interface.

e The behaviour of 4D objects allows the use of
direct manipulation through the programming
process.

e The flexibility of the link concept allows mod-
ification and test of the interface under con-
struction, without having to compile it.

e Composition allows the definition of new
classes that organise simple components and
can be easily inserted in the INGRID tool.

e The Store and Retrieve functionality allows
to save and recover the Ul without explicit
knowledge of the objects it handles.

INGRID and ICE Using the facilities described
above for the ICE support, INGRID is able to:

e Allow a new class to be easily added to the
tool. As an example, the integration of the
Motif widget set was done simply by (auto-
matically) generating a new Display class for
each widget, that afterwards could be used
transparently by INGRID.

e Use the type run-time information to build
class inspectors for object parameterisation.

o Use the method information to guide the user
through the establishment of links between Ul
objects.

4.2 HyperCard on Unix

Once INGRID was available, we observed that it
could be easily modified to produce an hypertext
authoring system, similar to HyperCard. In fact,
the visual characteristics of HyperCard were pro-
vided by the INGRID Display editor, the Data ob-
jects of the 4D architecture are the components
that encapsulate the introduction of persistence,
and the HyperCard scripting language could be
seen as a dialogue mechanism.

The development of this system explored the
functionality of existing components: The SOHO?
storage system, the 4D Toolkit, and the INGRID
interface builder.

Hyplngrid and SOHO The SOHO system is
based on the HAM model (2] and its object ori-
ented interface offers a set of hypertext objects:
graph, context, node, and link. All of these objects
may have attributes attached to them. Internally,
SOHO is implemented using the sdbm library. Hyp-
Ingrid defined the Stack, Background, Card, Field
and Button abstractions using these storage facili-
ties.

The Hyplngrid Management Component
The HypIngrid abstractions were encapsulated into
4D Data objects, in order to be incorporated in
the overall application architecture. This was done
with the help of a simple parser.

This component is also responsible for the pars-
ing and execution of HypIngridTalk, the scripting
language that is a subset of HyperTalk.

The storage and retrieval of components, like
Cards, is rather transparent, and relies upon the
ICE and 4D functionality. In fact, Cards are saved
using the ICE external representation, together
with Xt resource files, in SOHO nodes.

Hyplngrid Visual Interface The visual inter-
face of Hyplngrid evolved from the INGRID Dis-
play Editor. All the direct manipulation facili-
ties offered by the Display Editor apply now to
the creation and manipulation of HypIngrid ob-
jects. Some facilities where added for stack import/

2Storage Of Hypermedia Objects

export operations, script editing, and expedite hy-
pertext linking.

The overall result highlighted several advantages
of the approach. First, the openness of the system
allows the integration of other tools, like the audio
device of the Unix workstation, dedicated editors,
for text, drawings or images, or other specialised
processes. Second, the graphical interface is also
based on generalised tools (Xt). This provides look
and feel compatibility with other applications. On
the other hand, it is conceivable to extend the Hy-
perCard concepts with other objects like, for ex-
ample, a Motif toggle to be used as a pin while
navigating in the hypertext document.

5 Conclusions and Future Direc-
tions

The fundamental conclusions we draw from the
work described in this paper are the following:

o Interactive applications and tools require a
comprehensive and open architecture to sup-
port functional partition and integration of
available components. The comprehensiveness
of the architecture facilitates the programming
process by providing a uniform object model
for all the components, and standardised inter-
connection mechanisms. We believe that the
4D architecture is a good step in this direction.

e The construction of interactive tools and sys-
tems requires support for interpretation and
rapid prototyping. This can be provided
by the language and programming environ-
ment (Smalltalk [6], Objective C [5]) or added
through a run-time support system like ICE.
Although implying an extra effort, it proved
successful to design and implement such a run-
time, given that we were able to keep open-
ness and easy integration with external com-
ponents.

e The facility of evolving the INGRID tool to a
hypertext/authoring system shows that there
is a common denominator in these family of
tools, which is implemented by the joint coop-
eration of the architecture and the run-time.

This fact also suggests that further function-
ality of the run-time and architecture should
be made generic and reusable across different
tools and applications.

The future directions can be easily extrapolated
from the above conclusions. The promising direc-
tions are the extension of the architecture and the
extension of the run-time. Our goals are to extend
them in the following way:

e The purpose of the run-time is to support in-
teractive programming and rapid-prototyping.
Generic support for knowledge acquisition and
manipulation is a requirement for adaptive
and more intelligent user interfaces [14], which
makes it an important extension .

e The architecture can be extended to support
distribution. Promising experiences have been
made in this direction, [1] opening the way to
a smooth transition to CSCW [7] applications.

Acknowledgements

This work was supported partially by the Commis-
sion of the European Communities, under the (Co-
mandos Esprit Project), and partially by JNICT,
the Portuguese National Board for Research.

References

[1] P. Antunes, N. Guimardes, and R. Nunes. Ex-
tending the User Interface to the Multiuser
Environment. European Conference on Com-
puter Supported Collaborative Work, CSCW
Developers Workshop, Amsterdam, Septem-
ber 91.

[2] B. Campbell and J. Goodman. HAM: A Gen-
eral Purpose Hypertext Abstract Machine.
Communications of ACM, 31(7):856-861, July

- 1988,

[3] L. Carrico, N. Guimaraes, and P. Antunes.
INGRID : A Graphical Tool for User Interface
Construction. In Proceedings of the EUUG
Spring Conference, Munich,, April 1990.

[4] J. Conklin. Hypertext: An Introduction and
Survey. IEEE Computer, 17-41, September
1987.

[5] B.J. Cox. Object-Oriented Programming -
An Evolutionary Approach. Addison-Wesley,
1986.

i

[6] A. Goldberg and D. Robson. Smalitalk-
80: The Language and its implementation.
Addison-Wesley, 1983.

[7] I. Greif. Computer Supported Collaborative
Work :A Book of Readings. Morgan Kaufman
Publishers, 1988.

[8] N. Guimaraes. INGRID: Interactive Graph-
ical Interface Designer. Tutorial presented
at the 5th Annual X Technical Conference,
Boston, January 1991.

[9] N. Guimaraes, L. Carrico, and P. Antunes.
INGRID : An Object Oriented Interface
Builder. In Proceedings of the TOOLS’91
Conference, Santa Barbara, California, July
1991.

[10] H.Rex Hartson and Deborah Hix. Human-
Computer Interface Development:Concepts
and Systems for its Management. ACM Com-
puting Surveys, 21(1), March 1989.

[11] G. Harvey. Understanding Hypercard.
Alameda, CA : SYBEX Inc., 1988.

[12] Brad Myers. User Interface Tools: Introduc-
tion and Survey. IEEE Software, 15-23, Jan-
uary 1989.

[13] B. A. Sheil. Power Tools for Programmers.
In David R. Barstow, Howard E. Shrobe, and
Erik Sandewall, editors, Interactive Program-
ming Environments, chapter 2, pages 19-30,
McGraw-Hill, 1986.

[14] J.W. Sullivan and S.W. Tyler. Intelligent User
Interfaces. ACM Press, 1991.

[15] D.A. Young. X Window Systems Program-
ming and Applications with Xt. Prentice Hall,
1989.

