A System for Supporting and Managing Same-
Time/Different-Place Group Interactions

Pedro A. Antunes

Department of Eledrical and Computer Engineering
Instituto Superior Tecnico, Technicad University of Lisbon, Portugal
Tel: +351.1.84174-51, ma@digitais.ist.utl.pt

ABSTRACT

This paper describes a user-interface system developed to
suppat group interadions for same-time/different-place
cooperative gplicaions. We aldress three fundamental
aspeds of these kind of systems: information sharing,
coordination and multiuser-interfface The proposed
approach defines four types of objeds. Contents store
application data. Containers are dedicaed to organise and
structure gplication data. Connections manage group
coordination. And, finally, Monitors are mncerned with
users awareness of cooperative adivities. One important
charaderistic of the gproacd is that it identifies and maps
into the @ove objeds two basic properties of group
interadion suppart: visibility (public/private information)
and durability (durable/transient information). The system
eases the design of complex group interadion proceses
becaise it defines smple adions that allow programmers
and users to define and combine objed properties. An
example of system usage is given for an applicdion that
supparts brainstorming adivities.

KEYWORDS: Group Interadion, CSCW.

INTRODUCTION

The computer suppart to group interadion consists of three
basic functionaliti es: information sharing, coordination and
multiuser-interface Information sharing all ows to establish
a mmmon context between individuals, a functionality that
requires the spedfication of a data consistency model. Data
consistency can be preserved through concurrency cortrol
mechanisms [5][12], eg. locking, versioning, history,
views, etc.

Group interadion adds the notion of interdependence
[23][13] and coordination [24][22] to information sharing.
Interdependence means that, in cooperative settings,
adivities flow from one individual to another, while
coordination introduces the requirement of managing the
dependencies between adivities. Several coordination
mechanisms have been proposed [31], eg. free
mechanisms, that rely on the socia protocols established by
users and do not control the accssto the medium, floor-
control, semi-formal, based on language and formal
medhani sms.

The multiuser-interfaceis responsible for mediating wsers
and the system. The multiuser-interface must define a
public space shared by all users, and maintain visual
consistency of objeds which are placed in the public space

It must also manage the interconnedion of private and
public spaces, since group adivities are a®mbled from a
mixture of private and public adivities. One more
multiuser-interface requirement exists: it must provide
users awareness on cooperative adivities[7][16][32].

The computer suppat to group interadion can also be
charaderised in time/space domains [18][30]. The
combination of these domains defines four different types
of systems: (1) same-time/same-place which focus on the
computer suppat to information sharing, since
coordination and multiuser-interface @n be established
faceto-face (2) different-time/different-place which
minimises multiuser-interface mechanisms, fundamentally
becaise most work is done in the users’ private spaces; (3)
different-time/same-place where few cooperative systems
can be placel, minimises information sharing and
coordination, emphasising single-user interface aspeds of
interadions; and (4) same-time/different-place which
reguires the full spedrum of group interadion suppart.

In same-time/different-place systems, information sharing
is necessary to preserve ashared context between users that
are not faceto-face coordination is es®ential to manage
interventions by users that are simultaneously using the
system; and multiuser-interfaceis essential to preserve the
degreeof co-presence of cooperative work.

This paper describes suppat to goup interadion
addressng in particular same-time/different-place
applications. The system is based on a small set of
graphicd objeds that ease the design of complex group
interadion proceses by hiding information sharing,
coordination and multiuser-interface mechanisms through
simple manipulations of objeds properties. Cooperative
applicaions are programmed by constraining objeds
properties and users manipulations.

The system has been used to address reseach issues at
system level (e.g. group awareness of network partitions
[15]) and aso organisationa level. At the organisationa
level, it has been used to implement and study the suppart
to group-dedsion processes in distributed organisationa
settings, structured acomording to dedsion techniques
developed in the social sciencesfield [3].

The paper is gructured in the following way. We start by
providing badkground information on our development
effort. The following two sedions describe the objeds that
define the multiuser-interface ad suppart the aordination
of users. Next, we dedicae one sedion to detail the suppart

Italy: ACM Press, 1998, pp. 216-225.

Proceedings of the Working Conference on Advanced Visual Interfaces, AVI '98. L'Aquila,

paa
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI '98. L'Aquila, Italy: ACM Press, 1998, pp. 216-225.

to information sharing. Then, we provide some
implementation details. An example gpli cation which uses
the proposed system is also presented. Finally, we present
some related work, conclusions and future lines of work.

BACKGROUND

The system described in this paper corresponds to the
evolution of a set of various g/stems which have been
developed since 1995till today. Its origin can be dtributed
to a tod, named NGTod, which was developed in the
context of two European Esprit projeds (BROADCAST
and ORCHESTRA) with the objedive of suppating same-
time/different-placegroup dedsion-making processesin the
organisational context [1][2][3]. NGTod was built over a
graph editing toal (from where it inherits the look and fed)
to implement one particular dedsion-making technique
developed in the socia sciences field: the Nominal Group
Tednique [35][25]. NGTod was developed in the C++
language ad Unix environment, had a replicaed
architedure, and suppat to information sharing was built
over dternative systems, including a socket-based message
broadcast system named MBus [21] and a set of reliable
group communication systems: 1SIS[11], HORUS [29] and
NavTedV/NavCoop[14][15].

In 1996 NGTool was ported from the Unix to the Windows
environment. Furthermore, Most of the functionality related
with the dted dedsion-making technique was generalised
and expanded, giving origin to several distinct todls
suppating brainstorming, ideas organisation, structured
discussions and voting tasks. All these different tools used
very similar interadion mechanisms, substantiating our
idea that the system could provide generic interadion
suppat for same-time/different-place ooperative sessons
[4]. To this ®oond implementation effort was given the
name NGMeding (Network Group Meding). Given the
experimental purposes, reliable cmmunicaion was not
considered important and though we used MBus again for
message broadcasting.

The later implementation, developed in 1997 and presented
here, results from the identification of several basic
properties assciated to multiuser-interface objeds
(visibility and durability, described later) and the definition
of simple user adions over those objeds, which although
being simple @an nrevertheless be combined in order to
creae distinct and functional cooperative gplicaions. The
current implementation uses a framework for developing
distributed applications named DASCo [33][34]. This
framework uses an approadh for objed replicaion (with
separation of concerns. distribution, persistency,
concurrency, etc.) different from the group communicaion
paradigm.

The experimental objedives we have followed have been
centred on the suppart to group dedsion-making processes,
their phases (such as forming, storming, norming and
performing [41]) and tasks. The focus on group interadion
results in less importance given to content and content
creaion, addressed by classes of systems such as document
production environments (eg. GroupDesk [19]),

cooperative ditors (e.g. Grove [18]) or group authoring
tools (e.g. Dolphin [38]). The reader may later notice that
these objedives are complementary and can be integrated
in our approad in the future.

MULTIUSER-INTERFACE SUPPORT

We start by defining a set of objeds which charaderise the
multi-user interface Containers, Contents and Monitors.

Containers and Contents

Containers represent and structure gplication data. A

Container is a functional objed which alows users to

manipulate its two components:

» A Content objed, which stores applicaion data.

* A representative component, which provides distinct
visual marks concerning the Content type.

Content objeds can be of type Simple, containing one data
unit defined by the agplicaion, or of type Composed,
containing a list of Containers. Content objeds are visible
to users through a presentation component. In the cae of a
Simple Content, the presentation component takes the form
of a small window, mediating user accesss to the
application data, while in the cae of a Composed Content
it takes the form of a set of arrows linking Containers.

@
lstT \
Q

QTY\

Fig. 1 - Organisation of Containers

The distinction between Containers and Contents
acomplishes ®veral purposes. First, it separates
applicaion data units from their visual structures and
representatives, thus allowing to share @plicaion data
between users while relaxing graphical properties sich as
positions or motions in display space Sewmnd, we ca
preserve display spaceby alowing usersto hide gplicaion
data units. Figure 1 ill ustrates how data structures can be
represented without showing contents. Findly, the
approach focus users' interadions over Containers rather
than Contents, avoiding this way distrading users with too
many modificaions over shared data.

/“‘f

Dynamic Properties of Containers and Contents

Both Container and Content objeds present two dynamic

properties:

* Vigibility: public/private
Objeds can be public or private. Private objeds suppart
individual adivities while public objeds are dedicaed to
suppat group adivities based on coordination and
information sharing. Public objeds follow a WY SIWIS

(What You See Is What | Se€ multiuser-interface
semantics [37] with the following relaxation: (1) allows
gpatial discrepancies (users e the same objed at
different positions); (2) all ows presentation discrepancies
(the same ohbjed may be viewable or hidden to users);
and (3) alows time discrepancies. The time relaxation
ensures that, although many temporary inconsistencies
may arise in the individua perception of content
modifications (due to communicaion delays in the
updates), the information that users get in the end is the
same,
« Durability: durable/transient

Transient objeds manage information intended to
disappea after some user manipulation. On the @ntrary,
durable objeds manage information that remains after
users manipulations. When transient, Containers and
Contents can be deleted, moved or reorganised between
Contents (between Composed Contents, in the cae of
transent Containers, to be ead). When durable,
Containers and Contents cannot be deleted, moved or
reorganised. Figure 2 presents the durability properties
for the hierarchy of objeds defined by the system.

Transient Durable
Container Container
|| Simple | | Simple
Content Content
Durable Durable
Content Content
Transient Transient
Content Content
|| Composed | Listof L Composed [Listof

Content Containers Content Containers

Fig. 2 - Durability property of objects

Publi ¢ Containers have two more properties:

* Moadification: modified/unmodified
This property is necessary to provide users awarenesson
the modification of Content objeds. The property is st
whenever users update a Content that is hierarchicdly
bellow a Container.

e Control: fredediting/conflict/resolving
This property identifies a set of states asciated to
infformation sharing and concurrency control. A
description of the @ncurrency control mechanisms
applied to public objedsisgiven later.

Monitors

Monitors are graphicd objeds that provide awareness of
users adivities and system operations. These objeds
consist of animated icons that may appea and dsappea
acording to the onditions they are @asociated to. A
Monitor always appeas close to a Container and reports on
its properties:
e Visbility: No monitor is defined for this property
(private/public visibility cues are given spatially, as
described later).

 Durability: A Monitor with the look of a pin informs on
the arrent objed state, either durable or transient.

g g

* Modification: A Monitor with the look of a glass
magnifier identifies if the Content objed (including
Composed Contents) has been modified by a user.

@)

e Control: A Monitor with the look of a semaphore
informs on the state of the protocol which manages
information sharing and concurrency control (green, the

user may edit data; yellow, conflicts may arise; red, the
user cannot edit data).

& ¥ i

Some Design Options and Observations

This ®dion describes ©me pradicd dedsions which are
independent from the multiuser-interfacesuppart described
above.

Private and public spaces. We dedded to identify the
visibility property of Containers and Contents using spatial
information, defining different spaces for private axd public
objeds. The gplicaion window is divided by a verticd
lineintwo dfferent areas: to the left users find their private
space while to the right they find the public space
Furthermore, we restricted the Content objeds visibili ty
properties. Contents, including Compased Contents, always
inherit their Containers visibility states, which means that
hierarchies of Containers cannot crossdifferent spaces.

Containers. We use an icon and an optiona label to
represent the Content associated to the Container. The
durability of a Container can be modified by clicking over
the Monitor (pin). Users can show/hide associated Contents
by double-clicking on Containers. A Container may change
the displayed icon when showing/hiding Contents.

Contents. In the current version of the system, Simple
Contents are implemented by a dialog box defined by the
Microsoft’'s Foundation Classes. The Content data is only
modified after a user presses the “accet” button. The
durability of a Content can be modified by pressng a
button (displaying a pin) available in the dialog box.
Composed Contents are presented to users as trees of
Containers, with direded lines conneded to the asociated
Container (see Figure 1). In future implementations an
hypertext approach will also be supparted.

Some Observations. We have experimented using the

described objeds with multi ple gplicaions:

e Organise ideas in space acwording to perceived
relationships.

 Discusson topics, enclosing users positions, arguments
and comments.

 Votes concerning different topics.

» Cognitive maps[17].

Casua observations of system usage and discussions with

users owed that, although no definition of Container and

Content objeds were given, the user interfaceis easily
understood and accepted. It must be noted however that the
tasks observed considered mostly private adivities with
public entries of small phrases (ideas, comments, etc.).

We dso experimented the system suppat to highly
focussed interadions, where users are expeded to converge
to the same information. This was implemented by
modifying the public Container to open its assciated
Content to all users and requiring wsers to pressan “accept”
button. The gproach, however, was a partial failure, not
necessarily due to communicaion delays in large-scde
settings, but mostly because users took time to switch from
private to public adivities and read the information. This
observation makes difficult to implement some dedsion
making techniques that rely on face-to-face interadions,
such as the Nominal Group Technique. These techniques
have to be modified in order to increase private work.

Different forms of relaxing objeds graphicd properties
were experimented, for instance keeping positions in the
public space onsistent. This, however, resulted in loss of
users focus, spedally with large objed hierarchies. On the
contrary, the individual positioning of objeds preserves
personal spatial references and avoids the need for
constantly displaying application data.

COORDINATION SUPPORT

Coordination is addressed by one more type of objed
defined by the system: the Connedion.

Connections

Connedions are dynamic objeds that structure users

interadions over pairs of Containers. Part of the semantics

of these objeds depends on properties associated to the pair
of Containers. A Connedion has three ®mponents:

e Origin: a Container from which the Connedion is
started.

» Destination: a Container where the Connection finishes.
If no destination isidentified, the system creaes one.

e Transfer: a temporary Container (may be the origin)
which allows to transfer information between origin and
destination.

Connedions are established by users with drag-and-drop

operations. Then, the Connedion proceels in two phases:

(1) the initialisation phase, where the temporary Container

is creaed and the origin objed is modified acording to its

properties, and (2) the finalisation, where the temporary

Container is removed and the destination objed is modified

acording to its properties. After these two steps, the

Connedion has acaomplished its task and vanishes.

The asciation between a Connection and the durabili ty
property of origin objeds is the following (seeFigure 3). A
transient origin is removed from its Compased Content (if
any) by the Connedion and becomes the transfer objed. If
the origin is durable, the Connedion preserves the origin
and creaes a opy of it, that becomes the transfer. Two
other alternatives must be cnsidered if the origin is
durable: the Content associated to the origin is also durable
or, on the contrary, is transient. If the Content is durable, it

is preserved, but, if the Content is transient, it is made
empty.

Removeorigin
(from Conposed Content)
Transfer istheorigin

Transient

Starting Origin
‘ Durable

Preserve origin

Origin Transfer iscopy of origin
| | Simple
Content
Durable Origin Content
Content is preserved
Transient Origin Content
Content ismade empty
|| Composite
Content
Ending Destination
| | Simple
Content
Add transfer
Durable Content
Content tothis
Transient Substitute this
by transfer
Content Content
Composite | Add transfer
— | Content to thislist

Fig. 3 - Connectionsand the durability of objects

Now, concerning the destination objed. A destination has
either a Simple or Composed Content. If Simple and
transient, the Connedion substitutes its Content by the
transfer Content. If Simple and durable, the Connedion
appends the transfer data to the destination Content.
Finaly, if the destination is Composed, the Connedion
adds the transfer to the list of Containers. Figure 3 presents
this various adions assciated to a Connedion.

Connedions have dso implicaions in the visibility
property of objeds. Since gplicaion data has a public
status in public objeds and a private status in private
objeds, Connedions alow users to transfer objeds and
data acossdifferent work spheres. Table 1 presents sveral
examples of Connections and the @rresponding
functionality.

The functionality of Connedions, combined with durabil ity
and visihility properties of Containers and Contents,
provides the system suppart to coordination. One particular
asped of the gproac is that it avoids the definition of a
spedfic ooordination medianism, but alows the
implementation of different coordination mechanisms at the
applicaion level. To substantiate this gatement, we present
some examples that we have experimented so far:

« Establish how data can be aeaed in the public space
(restrict the origin objeds and require that data be first
creded in the private space.

 Establish how data can be organised in the public space
(restrict the destination objeds).

» Establish how data can be transferred from the public
spaceto private spaces (avoid or require that public data
be removed).

Origin Destination Functionality

Durable Container Container with Simple |Copies data from the origin to
with Simple Content |Content the destination

Transient Container |[Container with Simple [Remowves data from the origin
with Simple Content |Content and migrates it to the destination

Container with
Simple Content

Transient Container |Substitutes previous data at the
with Simple Content [destination with the origin data

Container with Durable Container Appends origin data to the
Simple Content with Simple Content |destination

Durable Container Container with Duplicates data, generating a
with Simple Content [Composed Content new Container at the destination
Transient Container |Container with

with Composed Composed Content
Content
Private and transient |Public Container
Container

Public and durable
Container

Reorganises data, moving the
origin Container to the
destination

Migrate data to the public sphere

Private and transient |Copy data to the private sphere
Container
Tab. 1 - Examples of Connections
» Define who produces and consumes data in the public

space(identifying who can establi sh Connedions).

» Define spedfic roles, for instance, the hierarchy of public
objeds may only be modified by an editor (verificaion
of who establishes Connedions).

« Define protocols, using intermediate objeds, e.g. users
may send data to an objed in the public space from
which only a moderator can move data out (restrict
Connedionsto and from that objea).

As it may be inferred from the examples above, the

implementation of coordination mechanisms at the

application level consists on the spedficaion of restrictions

applied to Containers:

 Redtrictions to dynamic property changes (e.g. they can
only be private and durable).

« If they can be used or not as origin and/or destination for
Connedions.

« Which spedfic objedsthey can be conneded from/to.

« Which spedfic users can establish Connedions from/to.

INFORMATION SHARING

In our system, information is dared by replicaing all
objeds which have the public property set. The system
component that suppats objed replication and handles
concurrency control over distributed replicas is therefore
asciated to public Contents and Containers. We identify
three situations where nflicts due to concurrent
operations by users can occur, and present the solutions
adopted in the system:
< Atomic operations, such as modifying the durability or
visibility properties of public Containers and Contents.
Our approach relies on the seridisation of messages
which are broadcasted to all replicas in order to inform
on property changes. No concurrency control is
performed by the system: all replicas aayuire the latest
property change performed by any user.
« Operations associated to coordination, i.e. establishment
of connections between Containers.
The probability of occurrence of such conflicts is low,
since they happen when users sled the same objeds as
origin or destination of Connedions, and Connedions
vanish im-mediately after these operations. However, the

probability of conflicts increases with large hierarchies of
Containers, since some Connedions may involve dl
children in the hierarchy. A semi-optimistic gpproach for
concurrency control was <leded: we dlow users to
fredy establish Connedions but immediately suspend the
operation if a wnflict is deteded. If a @nflicting
Connedion is completed locdly by the user (becaise no
conflicting information was recaved by the locd replica
during the drag-and-drop) the locd operation is rolled
badk and the initial state isrecovered.

As previously noted, Connedions established from or to
Containers with Compaosed Contents may involve alarge
set of Containers. Under those drcumstances, the system
deteds posshle mnflicts by: (1) at the initialisation
phase, starting at the origin objed, checing up and down
all objeds referenced by Composed Contents; and (2) at
the finalisation phase, starting at the destination objed,
cheking up and down al obeds referenced by
Composed Contents. If any objed chedked is origin of a
Connedion or is a Simple Content being edited, the
Connedion is aborted.
« Editing operations, concerning Contents modifications.

DONE
editing-- @
if editing=0

REPLICATE
EDIT
editing++

If voted = all
REPLICATE

EDIT EDIT

If editing=0
RESOLVE

VOTE
voted++

Fig. 4 - States machinefor Content editing

For Content editing, we use an optimistic goproach based
on a versioning mechanism: users are dlowed to fredy
edit the public Content. If a conflict is deteded, different
versions are generated by the system, and users are later
requested to vote on which version should be seleded (a
majority rule is used). Figure 4 presents the state machine
used to handle editing operations.

IMPLEMENTATION

Figure 5 presents the UML (Unified Modelling Language
[28]) diagram of the dasses that implement Contents,
Containers and Connedions asociated to multiuser-
interfaceand coordination suppart.

The foll owing classes are implemented:

* Container: The visibility and durability properties alow to
define ordination and information sharing. The
methods preLinkAsOrigin and postLinkAsDestiny indicate
that the Container participates, respedively, as origin or
destination of a Connedion. The method generate
implements the functionality that allows a Container to
generate other Containers. This method is used when a
Connedion does not identify a destination objed.
Methods openContentView and CloseContent View allow
usersto open or close the aswciated Content objed.

» Content: Has two derived classs:

 SimpleContent: Is a wrapper for a didog box from
Microsoft’s Foundation Classes. |mplements the Clone
method for dupli caing objeds.

» ComposedContent: Implements the list of Containers.
Has algorithms for pladng rew Containers, avoiding
juxtapasitions, and also for opening/closing the listed
Containers as a group.

« Connedion: Recaves the identificaion of origin and
destination Containers. Method getDestiny creaes a
destination when it is not identified by users. The
connectionAllowed method verifies if the nnedion is
vaid. This method can be redefined in order to
implement spedfic coordination mechanisms for ead
applicaion.

Container
JBLIC, PRIVATE}
{TRANSIENT, DURABLE}
'OPEN, CLOSED}

Content referenced_by . .
‘manipulation : {TRANSIENT, DURABLE} mtainer
view_state : {OPEN, CLOSED}
teferenced_by : Container

setReferencedBy()
f ()

| —referenced_by

ice()
setVisibilityPropOnCascade()
referenceFromContent()
dereferenceFromContent()
openView()
closeView()
openContentView()
closeContentView()

generate()

closeView (

SimpleContent erlist origin transfer destiny_hint destiny

PropOnCascade()

clo<c\ fiews() Connection
S hint : Container
orig C 3
o i

ner
+ Container

start()

finish()
connectionAllowed()
getDestiny()

Fig. 5- UML description of system classes

/]

N ——1
OpaqueSyncReclnter A
queue_

SimpleContent

createlnvocation()
postControl()
preControl()

startEdit() = 0
endEdit() = 0
chooseVersion() = 0

SyncRecSimpleContent

RealSimpleContent

real_container : RealSimpleContent
sync_data : SimpleContentSyncDatale>—— yeal content ——f startEdit()

endEdit()
chooseVersion()

startEdit()
endEdit()
chooseVersion() o

sync_data

SimpleContentSyncData

editors
solvers
state

Fig. 6 - UML description of infor mation sharing classes

Suppat to objed replicaion and concurrency control is

implemented at the Simple Content objed, and operates

only when the visibility property has the public state. The

following objeds are involved (seeFigure 6):

 SimpleContent: Derived from Content, it defines startEdit
and endEdit for starting and finishing content editing.

* RealSimpleContent: Implements the SimpleContent without
objed replication. It is used when the Content visibility
property is private.

* SyncRecSimpleContent: Implements objed replicaion and
concurrency control using data stored by SimpleContent
SyncData. It maps startEdit and endEdit into preControl and
postControl. These two methods are provided by the
DASCo framework for starting and finishing replicated
objed invocaions. The method preControl does not
perform concurrency control, which would be
pessmistic, but informsif apossble conflict is deteded.

Architectural Details

The aurrent version of the system is based on a replicated
architedure, where one dient version of the system is
instantiated at ead user’'s madiine running the Window
95/NT operating system. As previous referred, public
objeds are replicaed at ead client site. A server must be
running in order to suppat objed replicaion and
invocation. Basicdly, the server receves information from
one replica ad diseminates that information to the other
replicas. Client/server communication uses TCP/IP sockets.
The server runs the DASCo framework, dedicated to
suppat objed invocaion, serialisation, concurrency and
concurrency control over invocaions. Due to DASCo
spedfic requirements, the server must run on a Unix
madhine.

EXAMPLE

In order to illustrate the system previously described in
usage, we present an example gplicdion. This applicaion
is intended to allow users to generate and organise idess,
using a tedchnique similar to the brainstorming technique
[20][26]. The requirements of this application are:

« A public space is neassary to increasse synergy, by
alowing users to observe ideas aready generated by the
group.

» Users can fredy generate ideas in their private or public
spaces. Ideas can be moved from private to public spaces.

* |deas can be structured in folders.

* In the public space users can fredy move ideas around
folders, remove them from folders or change their
contents, independently of their author.

[IdeaGen: Moderator Carlos

o /l\-

vy ﬁ%\

Elegant

E

%*T%@

[woM[

Fig. 7 - Application window

The implementation of this toodl required the definition of

the following objeds (seeFigure 7):

« A Container dedicated to generate folders for storing
ideas (top left).

This Container is configured to not be movable, be
permanently durable, and donot accept connedions as a
destination.

« A Container of type folder (e.g. top right).

Thisis a standard Container with a Composed Content. It
has two icons, a "briefcase” when the list of idess is
hidden, and a "light bulb over a paper" when the list of
idessisvisible.

« A Container of type idea (e.g. bottomright).
Thisisastandard Container with a Simple Content where
userswrite oneidea It hasa"light bulb" icon.

« A Container for deleting ideas or folders (bottom left).
This container has a "blad hole" icon and is configured
to be permanently durable and only accept connedions as
destination. Origin objeds are deleted independently of
their durability.

Figure 8 ill ustrates how users crede ideas from folders in
private spaces. The user establishes a cmnnedion from the
folder into the private space(no destination). Given that the
folder is durable, the mnnection creaes a new Container of
typeidea

Figures 9 and 10 illustrate the usage of the durability
property. In Figure 9, the mnnedion of a transient idea
moves the ideain spacewhile, in Figure 10, the mnnedion
of adurable idea cedaes anew ideain space

Figure 11 dsplays ideas which have been moved to the
public space Two users, Carlos at the left and Daniel at the

right can see differently the same information. Carlos is
editing one ideawhil e Daniel sees the folder closed. Figure
12 shows that Carlos finished editing and so Daniel seesthe
modificaion Monitor. In Figure 13, Daniel opens the folder
to seewhich ideawas edited.

Figures 14 to 16 illustrate how the system handles
concurrency control. In Figure 14, Carlos garts editing and
idea Danidl, in Figure 15, starts editing the same idea
Carlos and Daniel are informed that a possble conflict
exists but are dlowed to proceal editing. The system
credes versions and waits for both users to finish editing.
Finally, in Figure 16, users vote on which version should be
seleded.

RELATED WORK

A set of recent works can be related with some aspeds of
the system presented in this paper:

Visual Oblig. Is a GUI-builder for distributed multiuser
applicaions[10]. Interadion with Visual Obliq is based on
forms, and the unit of distribution is the form. Aspeds
pertaining to distributed computing, replication, sharing and
communicdion, are explicit to Visual Oblig programmers.
MEAD. Is a system that supparts the aeaion of multiuser
interfaces [9]. The basic system component of MEAD is the
User Display Agent which manages information display
and multiple user interadions at the graphicd objed level.
MEAD does not supply suppat to coordination
medhanisms, as defined by Connections.

[IdeaGen: Moderator Carlos [Mi[=] B3 || & |deaGen: Moderator Carlos [_ O[]
@ 9
v \

[7

£

= IdeaGen: Moderator Carlos

[M[=] E3 | & IdeaGen: Moderator Carlos

L ZFig. 8 - Createideasfrom folders
=l S

@ ©

|

L 7 ZFig. 9- Moveideas

M= 3 || & IdeaGen: Moderator Carlos

IH[=1 E3

T

L L 7IFig10- Createideasfrom other ideas

= IdeaGen: Moderator Carlos M=] Ed | = |deaGen: Participant D aniel |_ (O] x|

PasT A\
b = Pasta s

P |
Urna ideia ;I
Subrit | Cancel | & |
e e e [“IFig. 11 - Ideasin public space
= IdeaGen: Moderator Carlos !EE = IdeaGen: Participant D aniel !EE

I3 asT.\ A‘\ q]
1 B Pasta s

| I _ I T ZlFig. 12 - Monitoring modifications

= IdeaGen: Participant D aniel M=1 E ||| /= |deaGen: Participant D aniel |_ (O] |

@ B

= et Y
Q PBST-BA\Q q_\lea idp:aia* = ;I‘

=
Submit | Cancel | @ |
T

S S - “IFig. 13 - Looking for modification
= IdeaGen: Moderator Carlos Mi[=] Ed || = IdeaGen: Participant Daniel | _ (O] x|
| s =
Submil Close . .
t=_l] 2 Fig. 14 - User startsediting Content
= IdeaGen: Moderator Carlos JMiJ=] 3 || = Ideaben: Participant Daniel H=] &3
. .
G g T p
i o ubmil lose: o . L.
—bnit | Ok 1O] i | Cbe | O | Fig. 15 - Another user startsediting
T
Conteida ﬂ Conteida ﬂ
=l =l
ax | w3 | Select I ax | w3 | Select I
== v Cr— v

Fig. 16 - Choosing content version

CoSARA. Is a platform to spedfy and prototype multiuser knowledge of intricae spedficaion models. CoSARA
interadions [39]. The focus is on data sharing does not address coordination at the multiuser-interface
(implementing several concurrency control protocols). The level.

system also provides adivity monitoring. The interadion

medchanisms are defined at programming level, requiring

COLA. Isasystem that supparts cooperative work based on
a model which defines adivities (cooperation), roles
(coordination) and events (awareness) [40]. COLA does not
address the multiuser-interface level of group interadion
suppart.

DIVA. Is an environment for group work that provides
suppat for communicaion, cooperation and awareness
[36]. DIVA uses a virtual office dstradion, based on
rooms, desks and dacuments types of objeds. DIVA is
aimed at the integration of different CSCW toadls, rather
than suppat to cooperative gplicaions. DIVA provides
group awareness on users adivities in the system: users
change adivities and coupling by moving through the
virtual office i.e. dragging icons around rooms and desks.
The system shares the information space ad establishes
audio/video channels for users at the same desk.

DIVE/CyCo. Are, respedively, three ad two dmensional
systems that suppat cooperative interadions [8]. These
systems use aspatial model that defines levels of awareness
based on spatial metrics (orientation and distance). Levels
of awareness are used to fire different events. For instance,
a far objed is able to notice a shareable piece of text;
bewmming closer, the objed is able to read text; even closer
the objed may be ale to cooperatively manipulate text.
Group interadion is defined by moving objeds.

Ramonamap. Is an interadive map that serves as interface
to a shared database [6]. The way Ramonamap displays
resources, using iconic information, is comparable to the
one provided by Containers/Contents. No detail s are given
on multiuser-interface coordination or information sharing
functionality.

GroupDesk. Is an environment for the mordination of
cooperative document production that addreses the
awareness requirement [19]. Awareness suppat is based
on the distribution of objed manipulation events and user
registering of interests on particular events.

DOLPHIN. Is a groupware @plicaion that provides
computer suppart to group meeings [38]. It defines private
and shared spaces. The shared space supparts whiteboard
usage (gestures). DOLPHIN provides hypermedia objeds
and accepts pen-based inputs. Objed transfers between
public and private spaces use dipboard cut/paste
operations. In remote @operations, awareness is only
supparted through dedicated audio/video channels.

ESC. Is atext-based environment that demonstrates the use
of innovative cmmunicaion channels for cooperation
[27]. In some sense, one Container/Content pair may
implement a ESC channel.

CONCLUSION AND FUTURE WORK

In this paper we present a system which supparts the
congtruction of applications and tods for same
time/different-place group interadions. The system
addreses three ommon functionalities of this kind o
applicaions. information sharing, coordination and
multiuser-interface apeds.

The proposed system is based on four objed types:
Contents, Containers, Connedions and Monitors. Contents
store gplicaion data while Containers represent and
structure gplication data. Connedions are dedicated to
address users coordination: they allow users to manipulate
Containers and Contents in a structured and cooperative
way. Finally, Monitors are dedicaed to provide users
awareness concerning the adions performed with the
system.

Two properties are fundamental to the functionality of
Contents and Containers: visibility and durability. The
visibility property addresses information sharing. Public
objeds are shared by al users while private objeds can
only be manipulated by one user. The visibility property
hides the necessary suppat to objed replicaion and
concurrency control. The durabili ty property all ows usersto
define dynamicdly how information is manipulated in the
system: durable objeds are intended to persist in the system
after being manipulated while transient objed are intended
to be wmbined into ather objeds or disappea.

The cmmbination of visibility and durability properties with
the functionality of Contents, Containers and Connedions
provides a wide — yet simple — range of group interadions.
Although the system does not implement any spedfic
coordination mechanism, generic suppat is provided
alowing applicdion programmers to construct such
medhanisms by spedfying constraints to oljeds defined by
the system. Details concerning public spaces and visual
consistency, interconnedion of public and private spaces,
objed communication, replicaion and concurrency control
are removed from the gplication programmers concerns.

The paper ill ustrates the dbove mmments with an example
applicaion. The gplicaion, which is intended to suppat a
socia processcommonly known as brainstorming, all owing
users to generate, modify and organise their ideas, requires
minimum programming to acaomplish its objedives.

We should however recognise that several issues could
have been, but were not, addressed by the system. Notably,
an hypertext class should have been derived from the
Composite Content, supparting one more powerful way of
organising application data. Also, Simple Contents are
currently of type text only, athough, for instance a
drawing objed would be useful for implementing
cooperative design applicaions.

Other aspeds that were not considered but will be
addres=d in the future ae:

» Remove the private/public space dichotomy, i.e. avoid
the identification of public and private properties based
on spatial information of objeds.

» Allow private Contents inside public Containers and
vice-versa

And finally, we intend to address the isuue of visualy
programming the cnstraints associated to system objeds.
The intention is to alow usersto creae and personalise on-
line their own objeds of cooperation, in a scenario

charaderised by long (and passbly different-time/different-
place cooperative sessons.

ACKNOWLEDGEMENTS

The aithor wishes to adknowledge and thank the
contributions for this work from: Tania Ho, Carlos Alves
and Dani€l Silva

REFERENCES

(1

(2]

(3]

(4]

(5]
(6]

(7]

(8]

(9

(10

(1Y

(12

(13
(14

(19

(16]

(17]

(18

(19

P. Antunes and N. Guimaraes. NGTool - Exploring Mechanisms of
Support to Interadion. In 1st CY-TED-RITOS Intern. Works. on
Groupware - CRIWG '95. CYTED-RITOS. Lisboa, Portugal. Sep.
1995.

P. Antunes and N. Guimaraes. Structuring Elements for Group
Interadion. In 2nd Conf. on Concurrent Engineaing, Research and
Applications (CE95). Concurrent Tech. Corp. Washington, DC. Aug.
199%5.

P. Antunes, N. Guimaraes, J. Cardenosa and J. Segovia. Beyond
Formal processes: Augmenting Workflow with Group Interadion
Technigues. In Conf. on Organisational Computer Systems - COOCS
'95. ACM. Aug. 1995.

P. Antunes and N. Guimaraes. User-Interface Support to Group
Interadion. In 2nd CYTED-RITOS Intern. Works. on Groupware -
CRIWG '96. CYTED-RITOS. Puerto Varas, Chile. Sep. 199.

N. Barghouti and G. Kaiser. Concurrency Control in Advanced
Database Systems. ACM Computing Surveys, 23(3). Sep. 1991.

J. Bartlett. Ramonamap - An Example of Graphical Groupware. In
Proc. of the ACM Symposium on User Interface Software and
Technology - UIST '94. Marina Del Rey, California. Nov. 1994.

M. Beaudouin-Lafon and A. Karsenty. Transparency and Awareness
in a Real-Time Groupware System. In Proc. of the ACM Symposium
on User Interface Software and Tech. Monterey, Cal. Nov. 1992.

S. Benford. A Spatial Model of Interadion in Large Virtual
Environments. In Proc. of the 3rd European Conf. on Computer-
Supported Cooperative Work - ECSCW '93. Milan. Sep. 1993.

R. Bentley, T. Rodden, P. Sawyer and I. Sommerville. Architectural
Support for Cooperative Multiuser Interfaces. IEEE Computer. May
1994.

K. Bharat and M. Brown. Building Distributed, Multi-User
Applications by Direct Manipulation. In Proc. of the ACM
Symposium on User Interface Software and Technology - UIST '94.
Marina Del Rey, Cdlifornia. Nov. 1994.

K. Birman, T. Joseph and F. Schmuck. Isis - A Distributed
Programming Environment, User's Guide and Reference Manual.
Tech. Rep., Dept. of Computer Science, Cornell Univ. Ithaca. Mar.
1988.

G. Blair and T. Rodden. The Opportunities and Challenges of
CSCW. Journa of Brazilian Computer Society, 1(1). Jul. 1994.

R. Butler. Designing Organizations. Routledge. 1991.

F. Cosguer, L. Rodrigues and P. Verisimo. Using Tailored Failure
Suspedors to Support Distributed Cooperative Applicdions. In Proc.
of the 7th Intern. Conf. on Parallel and Distributed Computing and
Systems. Washington, DC. Oct. 1995.

F. Cosquer, P. Antunes and P. Verisamo. Enhancing Dependability
of Cooperative Applications in Partitionable Environments. Proc. of
the 2nd European Dependable Computing Conf. (EDDC-2).
Taormina, Italy. Oct. 1996.

P. Dourish and V. Bellotti. Awareness and Coordination in Shared
Workspaces. In Proc. of ACM CSCW '92 Conf. on Computer-
Supported Cooperative Work. Toronto, Canada. Nov. 1992.

C. Eden. Strategy Development and Implementation: Cogritive
Mapping for Group Support. In Strategic Thinking: Leadership and
the Management of Change. John Wiley & Sons, Ltd. 1993.

C. Ellis, S. Gibbs and G. Rein. Groupware: Some Iswues and
Experiences. Comm. of the ACM, 34(1). 1991.

L. Fuchs, U. Pankoke-Babatz and W. Prinz. Supporting Cooperative
Awarenesswith Locd Event Mechanisms: The GroupDesk System.
In Proc. of the 4th European Conf. on Computer-Supported
Cooperative Work - ECSCW ' 95. Stockholm, Swe-den. Sep. 1995.

[20]

[21]

(22

(23

[24]
[29]
[26]

[27]

(28

(29
(30]

(31

(32

(33

(34
[39]
(36]

[37]

(38

(39

(40

[41]

C. Hwang and M. Lin. Group Dedsion Making urder Multiple
Criteria. Springer-Verlag. 1937.

S. Kaplan, A. Carrol and K. MadGregor. Supporting Collaborative
Processes with ConversationBuilder. In Conf. on Organizational
Computing Systems. Atlanta, Georgia. Nov. 1991.

R. Kraut and L. Streder. Coordination in Software Development.
Comm. of the ACM, 38. Mar. 1995.

T. Malone and K. Crowston. What is Coordination Theory and How
Can it Help Design Cooperative Work Systems? In Proc. of the
Conf. on Computer Supported Cooperative Work (CSCW '90). Los
Angeles, Cal. Oct. 1990.

T. Maone ad K. Crowston. The Interdisciplinary Study of
Coordination. ACM Computing Surveys, 26(1). Mar. 1994.

C. Moore. Group Techniques for Idea Building. SAGE Publications.
1994,

J. Nunamaker, L. Applegate, and B. Konsynski. Fadlitating Group
Creativity: Experience with a Group Decison Support System.
Journal of Management Information Systems, 3(4). 1987.

D. Patd and S. Kalter. Low Overhead, Loosely Coupled
Communication Channels in Collaboration. In Proc. of the 3rd
European Conf. on Computer-Supported Cooperative Work -
ECSCW '93. Milan. Sep. 1993.

Rational Software Corporation. Unified Modelling Language v 1.1c
— Notation Guide. World-Wide-Web http://www.rational.com. Jul.
1997.

R. Reness d al. The Horus System. Tech. Rep. Cornell Univ. Jul.
1993.

T. Rodden. A Survey of CSCW Systems.
Computers, 3(3). 191.

T. Rodden and G. Blair. CSCW and Distributed Systems. The
Problem of Control. In Proc. of the 2nd European Conf. on Computer
Supported Cooperative Work - ECSCW '91. Amsterdam. 1991.

T. Rodden. Populating the Application: A Model of Awareness for
Cooperative Applications. In ACM 1996 Conf. on Computer
Supported Cooperative Work - CSCW '96. Cambridge, Mass. Nov.
19%.

A. Siva, L. Gil and J. Martins. ThreeLayered Framework with
Separation of Concerns. In OOPSLA '96 Works. on Exploration of
Framework Design Principles. San Jose, Cal. Oct. 199.

A. Silva. Development and Extension of Frameworks. In Handbook
of Object Technology. Saba Zamir Editor. CRC Press 1998.

D. Sink. Using the Nominal Group Technique Effectively. National
Prod. Review. Spring 1983

M. Sohlenkamp and G. Chwelos. Integrating Communication,
Cooperation, and Awareness The DIVA Virtua Office
Environment. In ACM 1994 Conf. on Computer Supported
Cooperative Work - CSCW '94. Chapel Hill, North Carolina. Oct.
1994,

M. Stefik et a. Beyond the Chakboard: Computer Support for
Collaboration and Problem Solving in Medings. Comm. of the
ACM, 30(1). 1987.

N. Streitz, J. Geisder, J. Hagke ad J. Hol. DOLPHIN: Integrated
Meding Support Across Locd and Remote Desktop Environments
and Liveboards. In ACM 1994 Conf. on Computer Supported
Cooperative Work - CSCW '94. Chapel Hill, North Carolina. Oct.
19%.

I. Tou et a. Prototyping Synchronous Group Applications. IEEE
Computer. May 1994.

J. Trevor, T. Rodden and G. Blair. COLA: A Lightweight Platform
for CSCW. In Proc. of the 3rd European Conf. on Computer-
Supported Cooperative Work - ECSCW '93. Milan. Sep. 1993.

B. Tuckman. Development Sequencein Small Groups. Psychologicd
Bulletin. 1965.

Interading With

