
A System for Supporting and Managing Same-
Time/Different-Place Group Interactions

Pedro A. Antunes

Department of Electrical and Computer Engineering
Instituto Superior Tecnico, Technical University of Lisbon, Portugal

Tel: +351.1.841-74-51, paa@digitais.ist.utl.pt

ABSTRACT
This paper describes a user-interface system developed to
support group interactions for same-time/different-place
cooperative applications. We address three fundamental
aspects of these kind of systems: information sharing,
coordination and multiuser-interface. The proposed
approach defines four types of objects. Contents store
application data. Containers are dedicated to organise and
structure application data. Connections manage group
coordination. And, finally, Monitors are concerned with
users awareness of cooperative activities. One important
characteristic of the approach is that it identifies and maps
into the above objects two basic properties of group
interaction support: visibili ty (public/private information)
and durabili ty (durable/transient information). The system
eases the design of complex group interaction processes
because it defines simple actions that allow programmers
and users to define and combine object properties. An
example of system usage is given for an application that
supports brainstorming activities.

KEYWORDS: Group Interaction, CSCW.

INTRODUCTION
The computer support to group interaction consists of three
basic functionaliti es: information sharing, coordination and
multiuser-interface. Information sharing allows to establish
a common context between individuals, a functionali ty that
requires the specification of a data consistency model. Data
consistency can be preserved through concurrency control
mechanisms [5][12], e.g. locking, versioning, history,
views, etc.

Group interaction adds the notion of interdependence
[23][13] and coordination [24][22] to information sharing.
Interdependence means that, in cooperative settings,
activities flow from one individual to another, while
coordination introduces the requirement of managing the
dependencies between activities. Several coordination
mechanisms have been proposed [31], e.g. free
mechanisms, that rely on the social protocols established by
users and do not control the access to the medium, floor-
control, semi-formal, based on language and formal
mechanisms.

The multiuser-interface is responsible for mediating users
and the system. The multiuser-interface must define a
public space, shared by all users, and maintain visual
consistency of objects which are placed in the public space.

It must also manage the interconnection of private and
public spaces, since group activities are assembled from a
mixture of private and public activities. One more
multiuser-interface requirement exists: it must provide
users awareness on cooperative activities [7][16][32].

The computer support to group interaction can also be
characterised in time/space domains [18][30]. The
combination of these domains defines four different types
of systems: (1) same-time/same-place, which focus on the
computer support to information sharing, since
coordination and multiuser-interface can be established
face-to-face; (2) different-time/different-place, which
minimises multiuser-interface mechanisms, fundamentall y
because most work is done in the users’ private spaces; (3)
different-time/same-place, where few cooperative systems
can be placed, minimises information sharing and
coordination, emphasising single-user interface aspects of
interactions; and (4) same-time/different-place, which
requires the full spectrum of group interaction support.

In same-time/different-place systems, information sharing
is necessary to preserve a shared context between users that
are not face-to-face; coordination is essential to manage
interventions by users that are simultaneously using the
system; and multiuser-interface is essential to preserve the
degree of co-presence of cooperative work.

This paper describes support to group interaction
addressing in particular same-time/different-place
applications. The system is based on a small set of
graphical objects that ease the design of complex group
interaction processes by hiding information sharing,
coordination and multiuser-interface mechanisms through
simple manipulations of objects properties. Cooperative
applications are programmed by constraining objects
properties and users manipulations.

The system has been used to address research issues at
system level (e.g. group awareness of network partitions
[15]) and also organisational level. At the organisational
level, it has been used to implement and study the support
to group-decision processes in distributed organisational
settings, structured according to decision techniques
developed in the social sciences field [3].

The paper is structured in the following way. We start by
providing background information on our development
effort. The following two sections describe the objects that
define the multiuser-interface and support the coordination
of users. Next, we dedicate one section to detail the support

paa
Proceedings of the Working Conference on Advanced Visual Interfaces, AVI '98. L'Aquila, Italy: ACM Press, 1998, pp. 216-225.

to information sharing. Then, we provide some
implementation details. An example application which uses
the proposed system is also presented. Finally, we present
some related work, conclusions and future lines of work.

BACKGROUND

The system described in this paper corresponds to the
evolution of a set of various systems which have been
developed since 1995 till t oday. Its origin can be attributed
to a tool, named NGTool, which was developed in the
context of two European Esprit projects (BROADCAST
and ORCHESTRA) with the objective of supporting same-
time/different-place group decision-making processes in the
organisational context [1][2][3]. NGTool was built over a
graph editing tool (from where it inherits the look and feel)
to implement one particular decision-making technique
developed in the social sciences field: the Nominal Group
Technique [35][25]. NGTool was developed in the C++
language and Unix environment, had a replicated
architecture, and support to information sharing was built
over alternative systems, including a socket-based message
broadcast system named MBus [21] and a set of reliable
group communication systems: ISIS [11], HORUS [29] and
NavTech/NavCoop [14][15].

In 1996, NGTool was ported from the Unix to the Windows
environment. Furthermore, Most of the functionali ty related
with the cited decision-making technique was generalised
and expanded, giving origin to several distinct tools
supporting brainstorming, ideas organisation, structured
discussions and voting tasks. All these different tools used
very similar interaction mechanisms, substantiating our
idea that the system could provide generic interaction
support for same-time/different-place cooperative sessions
[4]. To this second implementation effort was given the
name NGMeeting (Network Group Meeting). Given the
experimental purposes, reliable communication was not
considered important and though we used MBus again for
message broadcasting.

The later implementation, developed in 1997 and presented
here, results from the identification of several basic
properties associated to multiuser-interface objects
(visibili ty and durabili ty, described later) and the definition
of simple user actions over those objects, which although
being simple can nevertheless be combined in order to
create distinct and functional cooperative applications. The
current implementation uses a framework for developing
distributed applications named DASCo [33][34]. This
framework uses an approach for object replication (with
separation of concerns: distribution, persistency,
concurrency, etc.) different from the group communication
paradigm.

The experimental objectives we have followed have been
centred on the support to group decision-making processes,
their phases (such as forming, storming, norming and
performing [41]) and tasks. The focus on group interaction
results in less importance given to content and content
creation, addressed by classes of systems such as document
production environments (e.g. GroupDesk [19]),

cooperative editors (e.g. Grove [18]) or group authoring
tools (e.g. Dolphin [38]). The reader may later notice that
these objectives are complementary and can be integrated
in our approach in the future.

MULTIUSER-INTERFACE SUPPORT

We start by defining a set of objects which characterise the
multi-user interface: Containers, Contents and Monitors.

Containers and Contents

Containers represent and structure application data. A
Container is a functional object which allows users to
manipulate its two components:
• A Content object, which stores application data.
• A representative component, which provides distinct

visual marks concerning the Content type.

Content objects can be of type Simple, containing one data
unit defined by the application, or of type Composed,
containing a list of Containers. Content objects are visible
to users through a presentation component. In the case of a
Simple Content, the presentation component takes the form
of a small window, mediating user accesses to the
application data, while in the case of a Composed Content
it takes the form of a set of arrows linking Containers.

Fig. 1 - Organisation of Containers

The distinction between Containers and Contents
accomplishes several purposes. First, it separates
application data units from their visual structures and
representatives, thus allowing to share application data
between users while relaxing graphical properties such as
positions or motions in display space. Second, we can
preserve display space by allowing users to hide application
data units. Figure 1 ill ustrates how data structures can be
represented without showing contents. Finall y, the
approach focus users’ interactions over Containers rather
than Contents, avoiding this way distracting users with too
many modifications over shared data.

Dynamic Properties of Containers and Contents

Both Container and Content objects present two dynamic
properties:
• Visibility: public/private

Objects can be public or private. Private objects support
individual activities while public objects are dedicated to
support group activities based on coordination and
information sharing. Public objects follow a WYSIWIS

(What You See Is What I See) multiuser-interface
semantics [37] with the following relaxation: (1) allows
spatial discrepancies (users see the same object at
different positions); (2) allows presentation discrepancies
(the same object may be viewable or hidden to users);
and (3) allows time discrepancies. The time relaxation
ensures that, although many temporary inconsistencies
may arise in the individual perception of content
modifications (due to communication delays in the
updates), the information that users get in the end is the
same.

• Durability: durable/transient
Transient objects manage information intended to
disappear after some user manipulation. On the contrary,
durable objects manage information that remains after
users manipulations. When transient, Containers and
Contents can be deleted, moved or reorganised between
Contents (between Composed Contents, in the case of
transient Containers, to be exact). When durable,
Containers and Contents cannot be deleted, moved or
reorganised. Figure 2 presents the durabili ty properties
for the hierarchy of objects defined by the system.

Transient
Container

Transient
Container

Simple
Content

Simple
Content

Durable
Content

Durable
Content

Transient
Content

Transient
Content

Composed
Content

Composed
Content

Durable
Container

Durable
Container

Simple
Content

Simple
Content

Durable
Content

Durable
Content

Transient
Content

Transient
Content

Composed
Content

Composed
Content

List of
Containers

List of
Containers

Fig. 2 - Durability property of objects

Public Containers have two more properties:
• Modification: modified/unmodified

This property is necessary to provide users awareness on
the modification of Content objects. The property is set
whenever users update a Content that is hierarchically
bellow a Container.

• Control: free/editing/conflict/resolving
This property identifies a set of states associated to
information sharing and concurrency control. A
description of the concurrency control mechanisms
applied to public objects is given later.

Monitors

Monitors are graphical objects that provide awareness of
users’ activities and system operations. These objects
consist of animated icons that may appear and disappear
according to the conditions they are associated to. A
Monitor always appears close to a Container and reports on
its properties:
• Visibility: No monitor is defined for this property

(private/public visibili ty cues are given spatially, as
described later).

• Durability: A Monitor with the look of a pin informs on
the current object state, either durable or transient.

• Modification: A Monitor with the look of a glass
magnifier identifies if the Content object (including
Composed Contents) has been modified by a user.

• Control: A Monitor with the look of a semaphore
informs on the state of the protocol which manages
information sharing and concurrency control (green, the
user may edit data; yellow, conflicts may arise; red, the
user cannot edit data).

Some Design Options and Observations

This section describes some practical decisions which are
independent from the multiuser-interface support described
above.

Private and public spaces. We decided to identify the
visibility property of Containers and Contents using spatial
information, defining different spaces for private and public
objects. The application window is divided by a vertical
line in two different areas: to the left users find their private
space while to the right they find the public space.
Furthermore, we restricted the Content objects visibili ty
properties. Contents, including Composed Contents, always
inherit their Containers visibil ity states, which means that
hierarchies of Containers cannot cross different spaces.

Containers. We use an icon and an optional label to
represent the Content associated to the Container. The
durabili ty of a Container can be modified by clicking over
the Monitor (pin). Users can show/hide associated Contents
by double-clicking on Containers. A Container may change
the displayed icon when showing/hiding Contents.

Contents. In the current version of the system, Simple
Contents are implemented by a dialog box defined by the
Microsoft’s Foundation Classes. The Content data is only
modified after a user presses the “accept” button. The
durabili ty of a Content can be modified by pressing a
button (displaying a pin) available in the dialog box.
Composed Contents are presented to users as trees of
Containers, with directed lines connected to the associated
Container (see Figure 1). In future implementations an
hypertext approach will also be supported.

Some Observations. We have experimented using the
described objects with multiple applications:
• Organise ideas in space, according to perceived

relationships.
• Discussion topics, enclosing users positions, arguments

and comments.
• Votes concerning different topics.
• Cognitive maps [17].
Casual observations of system usage and discussions with
users showed that, although no definition of Container and

Content objects were given, the user interface is easily
understood and accepted. It must be noted however that the
tasks observed considered mostly private activities with
public entries of small phrases (ideas, comments, etc.).

We also experimented the system support to highly
focussed interactions, where users are expected to converge
to the same information. This was implemented by
modifying the public Container to open its associated
Content to all users and requiring users to press an “accept”
button. The approach, however, was a partial failure, not
necessarily due to communication delays in large-scale
settings, but mostly because users took time to switch from
private to public activities and read the information. This
observation makes difficult to implement some decision-
making techniques that rely on face-to-face interactions,
such as the Nominal Group Technique. These techniques
have to be modified in order to increase private work.

Different forms of relaxing objects’ graphical properties
were experimented, for instance, keeping positions in the
public space consistent. This, however, resulted in loss of
users focus, specially with large object hierarchies. On the
contrary, the individual positioning of objects preserves
personal spatial references and avoids the need for
constantly displaying application data.

COORDINATION SUPPORT

Coordination is addressed by one more type of object
defined by the system: the Connection.

Connections

Connections are dynamic objects that structure users
interactions over pairs of Containers. Part of the semantics
of these objects depends on properties associated to the pair
of Containers. A Connection has three components:
• Origin: a Container from which the Connection is

started.
• Destination: a Container where the Connection finishes.

If no destination is identified, the system creates one.
• Transfer: a temporary Container (may be the origin)

which allows to transfer information between origin and
destination.

Connections are established by users with drag-and-drop
operations. Then, the Connection proceeds in two phases:
(1) the initialisation phase, where the temporary Container
is created and the origin object is modified according to its
properties; and (2) the finalisation, where the temporary
Container is removed and the destination object is modified
according to its properties. After these two steps, the
Connection has accomplished its task and vanishes.

The association between a Connection and the durabili ty
property of origin objects is the following (see Figure 3). A
transient origin is removed from its Composed Content (if
any) by the Connection and becomes the transfer object. If
the origin is durable, the Connection preserves the origin
and creates a copy of it, that becomes the transfer. Two
other alternatives must be considered if the origin is
durable: the Content associated to the origin is also durable
or, on the contrary, is transient. If the Content is durable, it

is preserved, but, if the Content is transient, it is made
empty.

Durable
Origin

Durable
Origin

Simple
Content

Simple
Content

Durable
Content

Durable
Content

Transient
Content

Transient
Content

Composi te
Content

Composi te
Content

Transient
Origin

Transient
Origin

Remove origin
(from Conposed Content)
Transfer is the origin

Starting

Origin Content
is made empty

Origin Content
is preserved

Preserve origin
Transfer is copy of origin

DestinationDestination

Simple
Content

Simple
Content

Durable
Content

Durable
Content

Transient
Content

Transient
Content

Composi te
Content

Composi te
Content

Substitute this
by transfer
Content

Add transfer
Content
to this

Ending

Add transfer
to this list

Fig. 3 - Connections and the durability of objects

Now, concerning the destination object. A destination has
either a Simple or Composed Content. If Simple and
transient, the Connection substitutes its Content by the
transfer Content. If Simple and durable, the Connection
appends the transfer data to the destination Content.
Finally, if the destination is Composed, the Connection
adds the transfer to the list of Containers. Figure 3 presents
this various actions associated to a Connection.

Connections have also implications in the visibil ity
property of objects. Since application data has a public
status in public objects and a private status in private
objects, Connections allow users to transfer objects and
data across different work spheres. Table 1 presents several
examples of Connections and the corresponding
functionali ty.

The functionality of Connections, combined with durabil ity
and visibili ty properties of Containers and Contents,
provides the system support to coordination. One particular
aspect of the approach is that it avoids the definition of a
specific coordination mechanism, but allows the
implementation of different coordination mechanisms at the
application level. To substantiate this statement, we present
some examples that we have experimented so far:
• Establish how data can be created in the public space

(restrict the origin objects and require that data be first
created in the private space).

• Establish how data can be organised in the public space
(restrict the destination objects).

• Establish how data can be transferred from the public
space to private spaces (avoid or require that public data
be removed).

Origin Destination Functionality
Durable Container
with Simple Content

Container with Simple
Content

Copies data from the origin to
the destination

Transient Container
with Simple Content

Container with Simple
Content

Removes data from the origin
and migrates it to the destination

Container with
Simple Content

Transient Container
with Simple Content

Substitutes previous data at the
destination with the origin data

Container with
Simple Content

Durable Container
with Simple Content

Appends origin data to the
destination

Durable Container
with Simple Content

Container with
Composed Content

Duplicates data, generating a
new Container at the destination

Transient Container
with Composed
Content

Container with
Composed Content

Reorganises data, moving the
origin Container to the
destination

Private and transient
Container

Public Container Migrate data to the public sphere

Public and durable
Container

Private and transient
Container

Copy data to the private sphere

Tab. 1 - Examples of Connections

• Define who produces and consumes data in the public
space (identifying who can establish Connections).

• Define specific roles, for instance, the hierarchy of public
objects may only be modified by an editor (verification
of who establishes Connections).

• Define protocols, using intermediate objects, e.g. users
may send data to an object in the public space from
which only a moderator can move data out (restrict
Connections to and from that object).

As it may be inferred from the examples above, the
implementation of coordination mechanisms at the
application level consists on the specification of restrictions
applied to Containers:
• Restrictions to dynamic property changes (e.g. they can

only be private and durable).
• If they can be used or not as origin and/or destination for

Connections.
• Which specific objects they can be connected from/to.
• Which specific users can establish Connections from/to.

INFORMATION SHARING

In our system, information is shared by replicating all
objects which have the public property set. The system
component that supports object replication and handles
concurrency control over distributed replicas is therefore
associated to public Contents and Containers. We identify
three situations where conflicts due to concurrent
operations by users can occur, and present the solutions
adopted in the system:
• Atomic operations, such as modifying the durability or

visibility properties of public Containers and Contents.
Our approach relies on the serialisation of messages
which are broadcasted to all replicas in order to inform
on property changes. No concurrency control is
performed by the system: all replicas acquire the latest
property change performed by any user.

• Operations associated to coordination, i.e. establishment
of connections between Containers.
The probabilit y of occurrence of such conflicts is low,
since they happen when users select the same objects as
origin or destination of Connections, and Connections
vanish im-mediately after these operations. However, the

probabili ty of conflicts increases with large hierarchies of
Containers, since some Connections may involve all
children in the hierarchy. A semi-optimistic approach for
concurrency control was selected: we allow users to
freely establish Connections but immediately suspend the
operation if a conflict is detected. If a conflicting
Connection is completed locally by the user (because no
conflicting information was received by the local replica
during the drag-and-drop) the local operation is rolled
back and the initial state is recovered.

As previously noted, Connections established from or to
Containers with Composed Contents may involve a large
set of Containers. Under those circumstances, the system
detects possible conflicts by: (1) at the initialisation
phase, starting at the origin object, checking up and down
all objects referenced by Composed Contents; and (2) at
the finalisation phase, starting at the destination object,
checking up and down all objects referenced by
Composed Contents. If any object checked is origin of a
Connection or is a Simple Content being edited, the
Connection is aborted.

• Editing operations, concerning Contents modifications.

EditingEditing

FreeFree ConflictConflict

ResolvingResolving

EDIT
editing++

EDIT
editing++

EDIT
editing++

DONE
editing--
if editing = 0
REPLICATE

If voted = all
REPLICATE

If editing = 0
RESOLVE

VOTE
voted++

Fig. 4 - States machine for Content editing

For Content editing, we use an optimistic approach based
on a versioning mechanism: users are allowed to freely
edit the public Content. If a conflict is detected, different
versions are generated by the system, and users are later
requested to vote on which version should be selected (a
majority rule is used). Figure 4 presents the state machine
used to handle editing operations.

IMPLEMENTATION

Figure 5 presents the UML (Unified Modelli ng Language
[28]) diagram of the classes that implement Contents,
Containers and Connections associated to multiuser-
interface and coordination support.

The following classes are implemented:
•

� � � � � � � � �
: The visibili ty and durabili ty properties allow to

define coordination and information sharing. The
methods � � � 	 � �
 � �
 � � � � �

 and � � � � 	 � �
 � � � � � � � � �
 indicate

that the Container participates, respectively, as origin or
destination of a Connection. The method

� � � � � � � �
implements the functionality that allows a Container to
generate other Containers. This method is used when a
Connection does not identify a destination object.
Methods

� � � � � � � � � � � � � � �
 and

� � � � � � � � � � � � � � � �
 allow

users to open or close the associated Content object.
•

� � � � � � �
: Has two derived classes:

• � � � � � � � � � � � � �
: Is a wrapper for a dialog box from

Microsoft’s Foundation Classes. Implements the
� � � � �

method for duplicating objects.
•

� � � � � � � � � � � � � � �
: Implements the list of Containers.

Has algorithms for placing new Containers, avoiding
juxtapositions, and also for opening/closing the listed
Containers as a group.

• Connection: Receives the identification of origin and
destination Containers. Method

� � � � � � � � � �
 creates a

destination when it is not identified by users. The� � � � � � � � � � � � � � � � �
 method verifies if the connection is

valid. This method can be redefined in order to
implement specific coordination mechanisms for each
application.

� � � � � � � � � �� � � � � ! " # � � � $ � � � � % � � � &� & � ' � � $ � � � � % � � � &� � � � � ! $ � � � � % � � � &� & % � (� & $ � � � � % � � � &
 � % & �) *(� � � #) *� � � � � � � � � � + , , � - � �) *' � � . � � � � !) *

� � � � % � � � &/ � � 0 � , � � ! $ 1 2 3 4 5 6 � 7 2 8 6 9 + : ; <= % � � > ? , % � � � � $ 1 : 8 + @ A 6 ; @ : 7 . 3 8 + 4 5 ; </ � � - " � % � � $ 1 B 2 ; @ 7 � 5 B A ; . <� � � � � � � $ � � � � � � �& � (� & � � � � � " 0 ! $ � � � � % � � � &
 � � 8 � (� & � � � � � 4 !) *� 6 � � � & � � � , ! 8 � (� & � � � � �) *> & � 5 � � C + B & � ' � �) *> � � 5 � � C + . � � � � !) *� � & � (� & � � � �) * � � 9 � � 0 � , � � ! 2 & � > B � � % � % � �) *& � (� & � � � � D & � = � � � � � � �) *� � & � (� & � � � � D & � = � � � � � � �) *� > � � 9 � � -) *� , � � 9 � � -) *� > � � � � � � � � � 9 � � -) *� , � � � � � � � � � 9 � � -) *' � � � & % � �) *

� � � � � � �= % � � > ? , % � � � � $ 1 : 8 + @ A 6 ; @ : 7 . 3 8 + 4 5 ; </ � � - " � % � � $ 1 B 2 ; @ 7 � 5 B A ; . <& � (� & � � � � � " 0 ! $ � � � � % � � � &
 � � 8 � (� & � � � � � 4 !) *� � & � (� & � � � �) *� � � � % � � � & 2 & � 5 � � C � �) *� � � � % � � � & 2 � � 5 � � C � �) *� , � � �) *� > � � 9 � � -) *� , � � 9 � � -) *

� � � � % � � � & 5 � �

� � = > � � � � � � � � � �� � � � % � � � & " , � � $ � � � � % � � � & 5 � �, % 0 � , $ E A � & � � '
 � � 9 � � 0 � , � � ! 2 & � > B � � % � % � �) *� , � � 9 � � -) *

A � = > , � � � � � � � �� % � % " % & & % ! $. % � % F

� � � � % � � � & " , � �

& � (� & � � � � � " 0 !
� � � � � � �

� & � ' � � � & % � (� & � � � � � ! " # � � � � � � � � !

& � (� & � � � � � " 0 !

. % � %

Fig. 5 - UML description of system classes

G H I J K L M N O P L O P
Q P R S P T U H P V W X YL O U T U H P V W X YZ [N N Q L \ L S Q H N O V W X Y

M N O P L O P

] L R K G H I J K L M N O P L O P
Q P R S P T U H P V WL O U T U H P V WZ [N N Q L \ L S Q H N O V W

G ^ O Z] L Z G H I J K L M N O P L O PS L R K _ Z N O P R H O L S `] L R K G H I J K L M N O P L O PQ ^ O Z _ U R P R ` G H I J K L M N O P L O P G ^ O Z a R P R
Q P R S P T U H P V WL O U T U H P V WZ [N N Q L \ L S Q H N O V W

b J R c d L G ^ O Z] L Z e O P L Sc d L d L _
Z S L R P L e O f N Z R P H N O V WJ N Q P M N O P S N K V WJ S L M N O P S N K V W

S L R K _ Z N O P L O P

G H I J K L M N O P L O P G ^ O Z a R P RL U H P N S QQ N K f L S QQ P R P L

Q ^ O Z _ U R P R

Fig. 6 - UML description of information sharing classes

Support to object replication and concurrency control is
implemented at the Simple Content object, and operates
only when the visibility property has the public state. The
following objects are involved (see Figure 6):
• � � � � � � � � � � � � �

: Derived from
� � � � � � �

, it defines
� � � � � g � � �

and
� � � g � � �

 for starting and finishing content editing.

• h � � � � � � � � � � � � � � � �
: Implements the � � � � � � � � � � � � �

 without
object replication. It is used when the Content visibility
property is private.

• � � � � h � � � � � � � � � � � � � � �
: Implements object replication and

concurrency control using data stored by � � � � � � � � � � � � �
� � � � � � � �

. It maps
� � � � � g � � �

 and
� � � g � � �

 into � � � � � � � � � �
 and

� � � � � � � � � � �
. These two methods are provided by the

DASCo framework for starting and finishing replicated
object invocations. The method � � � � � � � � � �

 does not
perform concurrency control, which would be
pessimistic, but informs if a possible conflict is detected.

Architectural Details

The current version of the system is based on a replicated
architecture, where one client version of the system is
instantiated at each user’s machine running the Window
95/NT operating system. As previous referred, public
objects are replicated at each client site. A server must be
running in order to support object replication and
invocation. Basically, the server receives information from
one replica and disseminates that information to the other
replicas. Client/server communication uses TCP/IP sockets.
The server runs the DASCo framework, dedicated to
support object invocation, serialisation, concurrency and
concurrency control over invocations. Due to DASCo
specific requirements, the server must run on a Unix
machine.

EXAMPLE

In order to ill ustrate the system previously described in
usage, we present an example application. This application
is intended to allow users to generate and organise ideas,
using a technique similar to the brainstorming technique
[20][26]. The requirements of this application are:
• A public space is necessary to increase synergy, by

allowing users to observe ideas already generated by the
group.

• Users can freely generate ideas in their private or public
spaces. Ideas can be moved from private to public spaces.

• Ideas can be structured in folders.
• In the public space, users can freely move ideas around

folders, remove them from folders or change their
contents, independently of their author.

 Fig. 7 - Application window

The implementation of this tool required the definition of
the following objects (see Figure 7):
• A Container dedicated to generate folders for storing

ideas (top left).
This Container is configured to not be movable, be
permanently durable, and do not accept connections as a
destination.

• A Container of type folder (e.g. top right).
This is a standard Container with a Composed Content. It
has two icons, a "briefcase" when the list of ideas is
hidden, and a "light bulb over a paper" when the list of
ideas is visible.

• A Container of type idea (e.g. bottom right).
This is a standard Container with a Simple Content where
users write one idea. It has a "light bulb" icon.

• A Container for deleting ideas or folders (bottom left).
This container has a "black hole" icon and is configured
to be permanently durable and only accept connections as
destination. Origin objects are deleted independently of
their durabili ty.

Figure 8 ill ustrates how users create ideas from folders in
private spaces. The user establishes a connection from the
folder into the private space (no destination). Given that the
folder is durable, the connection creates a new Container of
type idea.

Figures 9 and 10 ill ustrate the usage of the durabili ty
property. In Figure 9, the connection of a transient idea
moves the idea in space while, in Figure 10, the connection
of a durable idea creates a new idea in space.

Figure 11 displays ideas which have been moved to the
public space. Two users, Carlos at the left and Daniel at the

right can see differently the same information. Carlos is
editing one idea while Daniel sees the folder closed. Figure
12 shows that Carlos finished editing and so Daniel sees the
modification Monitor. In Figure 13, Daniel opens the folder
to see which idea was edited.

Figures 14 to 16 ill ustrate how the system handles
concurrency control. In Figure 14, Carlos starts editing and
idea. Daniel, in Figure 15, starts editing the same idea.
Carlos and Daniel are informed that a possible conflict
exists but are allowed to proceed editing. The system
creates versions and waits for both users to finish editing.
Finally, in Figure 16, users vote on which version should be
selected.

RELATED WORK
A set of recent works can be related with some aspects of
the system presented in this paper:

Visual Obliq. Is a GUI-builder for distributed multiuser
applications [10]. Interaction with Visual Obliq is based on
forms, and the unit of distribution is the form. Aspects
pertaining to distributed computing, replication, sharing and
communication, are explicit to Visual Obliq programmers.

MEAD. Is a system that supports the creation of multiuser
interfaces [9]. The basic system component of MEAD is the
User Display Agent which manages information display
and multiple user interactions at the graphical object level.
MEAD does not supply support to coordination
mechanisms, as defined by Connections.

Fig. 8 - Create ideas from folders

Fig. 9 - Move ideas

Fig.10 - Create ideas from other ideas

Fig. 11 - Ideas in public space

Fig. 12 - Monitoring modifications

Fig. 13 - Looking for modification

 Fig. 14 - User starts editing Content

Fig. 15 - Another user starts editing

Fig. 16 - Choosing content version

CoSARA. Is a platform to specify and prototype multiuser
interactions [39]. The focus is on data sharing
(implementing several concurrency control protocols). The
system also provides activity monitoring. The interaction
mechanisms are defined at programming level, requiring

knowledge of intricate specification models. CoSARA
does not address coordination at the multiuser-interface
level.

COLA. Is a system that supports cooperative work based on
a model which defines activities (cooperation), roles
(coordination) and events (awareness) [40]. COLA does not
address the multiuser-interface level of group interaction
support.

DIVA. Is an environment for group work that provides
support for communication, cooperation and awareness
[36]. DIVA uses a virtual office abstraction, based on
rooms, desks and documents types of objects. DIVA is
aimed at the integration of different CSCW tools, rather
than support to cooperative applications. DIVA provides
group awareness on users activities in the system: users
change activities and coupling by moving through the
virtual office, i.e. dragging icons around rooms and desks.
The system shares the information space and establishes
audio/video channels for users at the same desk.

DIVE/CyCo. Are, respectively, three and two dimensional
systems that support cooperative interactions [8]. These
systems use a spatial model that defines levels of awareness
based on spatial metrics (orientation and distance). Levels
of awareness are used to fire different events. For instance,
a far object is able to notice a shareable piece of text;
becoming closer, the object is able to read text; even closer
the object may be able to cooperatively manipulate text.
Group interaction is defined by moving objects.

Ramonamap. Is an interactive map that serves as interface
to a shared database [6]. The way Ramonamap displays
resources, using iconic information, is comparable to the
one provided by Containers/Contents. No details are given
on multiuser-interface, coordination or information sharing
functionali ty.

GroupDesk. Is an environment for the coordination of
cooperative document production that addresses the
awareness requirement [19]. Awareness support is based
on the distribution of object manipulation events and user
registering of interests on particular events.

DOLPHIN. Is a groupware application that provides
computer support to group meetings [38]. It defines private
and shared spaces. The shared space supports whiteboard
usage (gestures). DOLPHIN provides hypermedia objects
and accepts pen-based inputs. Object transfers between
public and private spaces use clipboard cut/paste
operations. In remote cooperations, awareness is only
supported through dedicated audio/video channels.

ESC. Is a text-based environment that demonstrates the use
of innovative communication channels for cooperation
[27]. In some sense, one Container/Content pair may
implement a ESC channel.

CONCLUSION AND FUTURE WORK

In this paper we present a system which supports the
construction of applications and tools for same-
time/different-place group interactions. The system
addresses three common functionaliti es of this kind of
applications: information sharing, coordination and
multiuser-interface aspects.

The proposed system is based on four object types:
Contents, Containers, Connections and Monitors. Contents
store application data while Containers represent and
structure application data. Connections are dedicated to
address users coordination: they allow users to manipulate
Containers and Contents in a structured and cooperative
way. Finally, Monitors are dedicated to provide users
awareness concerning the actions performed with the
system.

Two properties are fundamental to the functionali ty of
Contents and Containers: visibili ty and durabili ty. The
visibility property addresses information sharing. Public
objects are shared by all users while private objects can
only be manipulated by one user. The visibili ty property
hides the necessary support to object replication and
concurrency control. The durabili ty property allows users to
define dynamically how information is manipulated in the
system: durable objects are intended to persist in the system
after being manipulated while transient object are intended
to be combined into other objects or disappear.

The combination of visibili ty and durabili ty properties with
the functionali ty of Contents, Containers and Connections
provides a wide – yet simple – range of group interactions.
Although the system does not implement any specific
coordination mechanism, generic support is provided
allowing application programmers to construct such
mechanisms by specifying constraints to objects defined by
the system. Details concerning public spaces and visual
consistency, interconnection of public and private spaces,
object communication, replication and concurrency control
are removed from the application programmers’ concerns.

The paper ill ustrates the above comments with an example
application. The application, which is intended to support a
social process commonly known as brainstorming, allowing
users to generate, modify and organise their ideas, requires
minimum programming to accomplish its objectives.

We should however recognise that several issues could
have been, but were not, addressed by the system. Notably,
an hypertext class should have been derived from the
Composite Content, supporting one more powerful way of
organising application data. Also, Simple Contents are
currently of type text only, although, for instance, a
drawing object would be useful for implementing
cooperative design applications.

Other aspects that were not considered but will be
addressed in the future are:

• Remove the private/public space dichotomy, i.e. avoid
the identification of public and private properties based
on spatial information of objects.

• Allow private Contents inside public Containers and
vice-versa.

And finally, we intend to address the issue of visually
programming the constraints associated to system objects.
The intention is to allow users to create and personalise on-
line their own objects of cooperation, in a scenario

characterised by long (and possibly different-time/different-
place) cooperative sessions.

ACKNOWLEDGEMENTS

The author wishes to acknowledge and thank the
contributions for this work from: Tânia Ho, Carlos Alves
and Daniel Silva.

REFERENCES
[1] P. Antunes and N. Guimaraes. NGTool - Exploring Mechanisms of

Support to Interaction. In 1st CY-TED-RITOS Intern. Works. on
Groupware - CRIWG '95. CYTED-RITOS. Lisboa, Portugal. Sep.
1995.

[2] P. Antunes and N. Guimaraes. Structuring Elements for Group
Interaction. In 2nd Conf. on Concurrent Engineering, Research and
Applications (CE95). Concurrent Tech. Corp. Washington, DC. Aug.
1995.

[3] P. Antunes, N. Guimaraes, J. Cardenosa and J. Segovia. Beyond
Formal processes: Augmenting Workflow with Group Interaction
Techniques. In Conf. on Organisational Computer Systems - COOCS
'95. ACM. Aug. 1995.

[4] P. Antunes and N. Guimaraes. User-Interface Support to Group
Interaction. In 2nd CYTED-RITOS Intern. Works. on Groupware -
CRIWG '96. CYTED-RITOS. Puerto Varas, Chile. Sep. 1996.

[5] N. Barghouti and G. Kaiser. Concurrency Control in Advanced
Database Systems. ACM Computing Surveys, 23(3). Sep. 1991.

[6] J. Bartlett. Ramonamap - An Example of Graphical Groupware. In
Proc. of the ACM Symposium on User Interface Software and
Technology - UIST '94. Marina Del Rey, California. Nov. 1994.

[7] M. Beaudouin-Lafon and A. Karsenty. Transparency and Awareness
in a Real-Time Groupware System. In Proc. of the ACM Symposium
on User Interface Software and Tech. Monterey, Cal. Nov. 1992.

[8] S. Benford. A Spatial Model of Interaction in Large Virtual
Environments. In Proc. of the 3rd European Conf. on Computer-
Supported Cooperative Work - ECSCW '93. Milan. Sep. 1993.

[9] R. Bentley, T. Rodden, P. Sawyer and I. Sommervil le. Architectural
Support for Cooperative Multiuser Interfaces. IEEE Computer. May
1994.

[10] K. Bharat and M. Brown. Building Distributed, Multi-User
Applications by Direct Manipulation. In Proc. of the ACM
Symposium on User Interface Software and Technology - UIST '94.
Marina Del Rey, California. Nov. 1994.

[11] K. Birman, T. Joseph and F. Schmuck. Isis - A Distributed
Programming Environment, User's Guide and Reference Manual.
Tech. Rep., Dept. of Computer Science, Cornell Univ. Ithaca. Mar.
1988.

[12] G. Blair and T. Rodden. The Opportunities and Challenges of
CSCW. Journal of Brazilian Computer Society, 1(1). Jul. 1994.

[13] R. Butler. Designing Organizations. Routledge. 1991.
[14] F. Cosquer, L. Rodrigues and P. Verissimo. Using Tailored Failure

Suspectors to Support Distributed Cooperative Applications. In Proc.
of the 7th Intern. Conf. on Parallel and Distributed Computing and
Systems. Washington, DC. Oct. 1995.

[15] F. Cosquer, P. Antunes and P. Verissimo. Enhancing Dependabili ty
of Cooperative Applications in Partitionable Environments. Proc. of
the 2nd European Dependable Computing Conf. (EDDC-2).
Taormina, Italy. Oct. 1996.

[16] P. Dourish and V. Bellotti. Awareness and Coordination in Shared
Workspaces. In Proc. of ACM CSCW '92 Conf. on Computer-
Supported Cooperative Work. Toronto, Canada. Nov. 1992.

[17] C. Eden. Strategy Development and Implementation: Cognitive
Mapping for Group Support. In Strategic Thinking: Leadership and
the Management of Change. John Wiley & Sons, Ltd. 1993.

[18] C. Ell is, S. Gibbs and G. Rein. Groupware: Some Issues and
Experiences. Comm. of the ACM, 34(1). 1991.

[19] L. Fuchs, U. Pankoke-Babatz and W. Prinz. Supporting Cooperative
Awareness with Local Event Mechanisms: The GroupDesk System.
In Proc. of the 4th European Conf. on Computer-Supported
Cooperative Work - ECSCW ’95. Stockholm, Swe-den. Sep. 1995.

[20] C. Hwang and M. Lin. Group Decision Making under Multiple
Criteria. Springer-Verlag. 1987.

[21] S. Kaplan, A. Carrol and K. MacGregor. Supporting Collaborative
Processes with ConversationBuilder. In Conf. on Organizational
Computing Systems. Atlanta, Georgia. Nov. 1991.

[22] R. Kraut and L. Streeter. Coordination in Software Development.
Comm. of the ACM, 38. Mar. 1995.

[23] T. Malone and K. Crowston. What is Coordination Theory and How
Can it Help Design Cooperative Work Systems? In Proc. of the
Conf. on Computer Supported Cooperative Work (CSCW '90). Los
Angeles, Cal. Oct. 1990.

[24] T. Malone and K. Crowston. The Interdisciplinary Study of
Coordination. ACM Computing Surveys, 26(1). Mar. 1994.

[25] C. Moore. Group Techniques for Idea Building. SAGE Publications.
1994.

[26] J. Nunamaker, L. Applegate, and B. Konsynski. Facilitating Group
Creativity: Experience with a Group Decision Support System.
Journal of Management Information Systems, 3(4). 1987.

[27] D. Patel and S. Kalter. Low Overhead, Loosely Coupled
Communication Channels in Collaboration. In Proc. of the 3rd
European Conf. on Computer-Supported Cooperative Work -
ECSCW '93. Milan. Sep. 1993.

[28] Rational Software Corporation. Unified Modell ing Language v 1.1c
– Notation Guide. World-Wide-Web http://www.rational.com. Jul.
1997.

[29] R. Renesse et al. The Horus System. Tech. Rep. Cornell Univ. Jul.
1993.

[30] T. Rodden. A Survey of CSCW Systems. Interacting With
Computers, 3(3). 1991.

[31] T. Rodden and G. Blair. CSCW and Distributed Systems: The
Problem of Control. In Proc. of the 2nd European Conf. on Computer
Supported Cooperative Work - ECSCW '91. Amsterdam. 1991.

[32] T. Rodden. Populating the Application: A Model of Awareness for
Cooperative Applications. In ACM 1996 Conf. on Computer
Supported Cooperative Work - CSCW '96. Cambridge, Mass. Nov.
1996.

[33] A. Silva, L. Gil and J. Martins. Three-Layered Framework with
Separation of Concerns. In OOPSLA ’96 Works. on Exploration of
Framework Design Principles. San Jose, Cal. Oct. 1996.

[34] A. Silva. Development and Extension of Frameworks. In Handbook
of Object Technology. Saba Zamir Editor. CRC Press. 1998.

[35] D. Sink. Using the Nominal Group Technique Effectively. National
Prod. Review. Spring 1983

[36] M. Sohlenkamp and G. Chwelos. Integrating Communication,
Cooperation, and Awareness: The DIVA Virtual Off ice
Environment. In ACM 1994 Conf. on Computer Supported
Cooperative Work - CSCW '94. Chapel Hill , North Carolina. Oct.
1994.

[37] M. Stefik et al. Beyond the Chalkboard: Computer Support for
Collaboration and Problem Solving in Meetings. Comm. of the
ACM, 30(1). 1987.

[38] N. Streitz, J. Geissler, J. Haake and J. Hol. DOLPHIN: Integrated
Meeting Support Across Local and Remote Desktop Environments
and Liveboards. In ACM 1994 Conf. on Computer Supported
Cooperative Work - CSCW '94. Chapel Hill , North Carolina. Oct.
1994.

[39] I. Tou et al. Prototyping Synchronous Group Applications. IEEE
Computer. May 1994.

[40] J. Trevor, T. Rodden and G. Blair. COLA: A Lightweight Platform
for CSCW. In Proc. of the 3rd European Conf. on Computer-
Supported Cooperative Work - ECSCW '93. Milan. Sep. 1993.

[41] B. Tuckman. Development Sequence in Small Groups. Psychological
Bulletin. 1965.

